SINGLE-PHASE GLASS PASSIVATED SILICON BRIDGE RECTIFIER REVERSE VOLTAGE 100 to 1000 Volts FORWARD CURRENT 6.0 Ampere

FEATURES

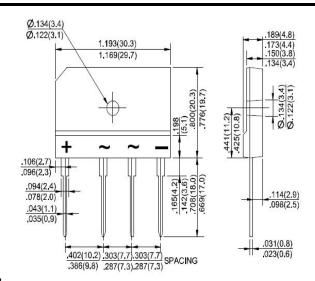
Rating to 1000V PRV. Ideal for printed circuit board. Low forward voltage drop, high current capability. Reliable low cost construction utilizing molded plastic technique results in inexpensive product. The plastic material has UL flammability classification 94V-0. Electrically isolated base-1500 Volts

MECHANICAL DATA

Polarity: Symbols molded on body. Weight: 0.26 ounces, 7.0 grams. Mounting position: Any.

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified , Single phase, half wave, 60Hz, resistive or inductive load. For canacitive load derate current by 20%


SYMBOL	GBJ601	GBJ602	GBJ604	GBJ606	GBJ608	GBJ610	UNIT
Vrrm	100 200 400 600 800 1000					V	
Vrms	70 140 280 420 560 700					V	
VDC	100	200	400	600	800	1000	V
I(AV)	6.0 2.8						A
IFSM	180						A
V _F	1.0					V	
IR	5.0 500						μA
l ² t	120						A ² S
CJ	55					pF	
Rejc	2.5					°C /W	
TJ	-55 to +150					°C	
Тѕтс	-55 to +150					°C	
	VRRM VRMS VDC I(AV) IFSM VF IR I ² t CJ RØJC TJ TSTG	VRRM 100 VRMS 70 VDC 100 I(AV) 100 IFSM 100 VF 100 IR 100	VRRM 100 200 VRMS 70 140 VDC 100 200 I(AV)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c } & 100 & 200 & 400 & 600 \\ \hline V_{RMS} & 70 & 140 & 280 & 420 \\ \hline V_{DC} & 100 & 200 & 400 & 600 \\ \hline I_{(AV)} & & & & & & & & & & & & & & & & & & &$	$\begin{array}{c c c c c c } V_{RRM} & 100 & 200 & 400 & 600 & 800 \\ \hline V_{RMS} & 70 & 140 & 280 & 420 & 560 \\ \hline V_{DC} & 100 & 200 & 400 & 600 & 800 \\ \hline I_{(AV)} & & & & & & & & & & & & & & & & & & &$	$\begin{array}{c c c c c c c } V_{RM} & 100 & 200 & 400 & 600 & 800 & 1000 \\ \hline V_{RMS} & 70 & 140 & 280 & 420 & 560 & 700 \\ \hline V_{DC} & 100 & 200 & 400 & 600 & 800 & 1000 \\ \hline V_{DC} & 100 & 200 & 400 & 600 & 800 & 1000 \\ \hline I_{(AV)} & & & & & & & & & & & & & & & & & & &$

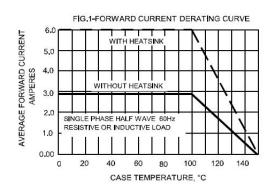
1- Measured at 1.0M Hz and applied reversed voltage of 4.0 VDC.

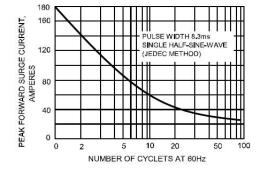
2- Device mounted on 75mm x 75mm x 1.6mm Cu Plate Heatsink.

Kingtronics[®] International Company

GBJ

GBJ601 THR

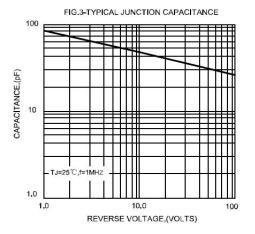

GBJ610

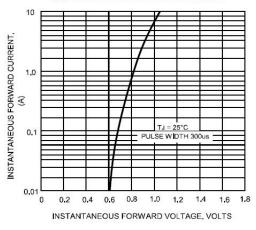

Dimensions in inches and (millimeters)

1

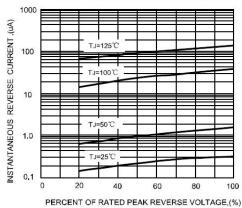
R

RATINGS AND CHARACTERISTIC CURVES




GBJ610

FLG,2-MAXIMUM NON-REPETITIVE SURGE CURRENT


GBJ601 THRU

Note: Specifications are subject to change without notice.

Kingtronics[®] International Company