For switching and amplifier applications

Absolute Maximum Ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

PARAMETER		SYMBOL	VALUE		UNIT
Collector Base Voltage	BC856 BC857 BC858, BC859	- Ссво	$\begin{aligned} & 80 \\ & 50 \\ & 30 \end{aligned}$	V	
Collector Emitter Voltage	BC8566 BC857 BC858, BC859	- $\mathrm{V}_{\text {ceo }}$	$\begin{aligned} & 65 \\ & 45 \\ & 30 \end{aligned}$		V
Emitter Base Voltage		- Vebo	5		V
Collector Current		-lc	100		mA
Peak Collector Current		-Icm	200		mA
Power Dissipation		Ptot	200		mW
Junction Temperature		TJ	150		${ }^{\circ} \mathrm{C}$
Storage Temperature Range		Tstg	-65 to +150		${ }^{\circ} \mathrm{C}$
Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}$					
PARAMETER		SYMBOL	MIN.	MAX.	UNIT
DC Current Gain at $-\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V},-\mathrm{Ic}=2 \mathrm{~mA}$	Current Gain Group	hfe	$\begin{aligned} & 125 \\ & 220 \\ & 420 \\ & \hline \end{aligned}$	$\begin{aligned} & 220 \\ & 475 \\ & 800 \end{aligned}$	-
Collector Base Cutoff Current at -V CB $=30 \mathrm{~V}$		-Ісво	-	15	nA
Collector Base Breakdown Voltage at $-\mathrm{lc}=10 \mu \mathrm{~A}$	$\begin{aligned} & \mathrm{BC} 856 \\ & \mathrm{BC} 857 \\ & \text { BC858, BC8 } \end{aligned}$	$-V_{\text {(BR) }}$ CBO	$\begin{aligned} & 80 \\ & 50 \\ & 30 \end{aligned}$	-	V
$\begin{aligned} & \text { Collector Emitter Breakdown Voltage } \\ & \text { at -Ic }=10 \mu \mathrm{~A} \end{aligned}$	BC856 BC857 BC858, BC859	$-V_{\text {(BR) }}$ CES	$\begin{aligned} & 80 \\ & 50 \\ & 30 \\ & \hline \end{aligned}$	-	V
Collector Emitter Breakdown Voltage at $-\mathrm{lc}=10 \mathrm{~mA}$	BC 856 BC 857 $\mathrm{BC} 858, \mathrm{BC} 859$	$-\mathrm{V}_{\text {(BR) }}$ ceo	$\begin{aligned} & 65 \\ & 45 \\ & 30 \end{aligned}$	-	V
Emitter Base Breakdown Voltage $\mathrm{at}-\operatorname{le}=1 \mu \mathrm{~A}$		$-\mathrm{V}_{\text {(BR) }}$ EBO	5	-	V
$\begin{aligned} & \text { Collector Emitter Saturation Voltage } \\ & \text { at }-\mathrm{IC}=10 \mathrm{~mA},-\mathrm{IB}=0.5 \mathrm{~mA} \\ & \mathrm{at}-\mathrm{CC}=100 \mathrm{~mA},-\mathrm{IB}=5 \mathrm{~mA} \\ & \hline \end{aligned}$		$-V_{\text {CE(sat) }}$	-	0.3 0.65	V
Base Emitter On Voltage at $-\mathrm{IC}=2 \mathrm{~mA},-\mathrm{VCE}=5 \mathrm{~V}$ at $-\mathrm{Ic}=10 \mathrm{~mA}-\mathrm{VCE}=5 \mathrm{~V}$ $\mathrm{at}-\mathrm{IC}=10 \mathrm{~mA},-\mathrm{V} \mathrm{CE}=5 \mathrm{~V}$		$-V_{\text {BE(sat) }}$	0.6 -	0.75 0.82	V
Current Gain Bandwidth Product at $-\mathrm{V}_{\text {CE }}=5 \mathrm{~V},-\mathrm{Ic}=10 \mathrm{~mA}, \mathrm{f}=100 \mathrm{MHz}$		f_{\top}	100	-	MHz
Output Capacitance at $-\mathrm{VCB}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		Cob	-	6	pF
```Noise Figure at \(-\mathrm{Ic}=200 \mu \mathrm{~A},-\mathrm{V}\) ce \(=5 \mathrm{~V}\), \(\mathrm{RG}=2 \mathrm{~K} \Omega, \mathrm{f}=1 \mathrm{KHz}\) at \(-\mathrm{lC}=200 \mu \mathrm{~A},-\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}\), \(R \mathrm{G}=2 \mathrm{~K} \Omega, \mathrm{f}=30 \sim 15 \mathrm{KHz}\)```	BC856, BC857, BC85 BC859, BC859	NF	-	10 4 4	dB

RATINGS AND CHARACTERISTIC CURVES BC856 THUR BC859


Figure 1. Static Characteristic

$\mathrm{I}_{\mathrm{c}}[\mathrm{mA} \mathrm{A}, \mathrm{COLLECTOR}$ CURRENT
Figure 3. Base-Emitter Saturation Voltage Collector-Emitter Saturation Voltage


Vce[V], COLLECTOR-BASE VOLTAGE

Figure 5. Collector Output Capacitance


Ic[mA], COLLECTOR CURRENT
Figure 2. DC current Gain

$V_{\text {eE }}$ [V], BASE-EMITTER VOLTAGE
Figure 4. Base-Emitter On Voltage


Ic[mA ], COLLECTOR CURRENT

Figure 6. Current Gain Bandwidth Product

Note: Specifications are subject to change without notice.

